
Porting Charm++/NAMD to IBM Blue Gene/Q

Wei Jiang
Argonne Leadership Computing Facility

7th, March

NAMD_esp
NAMD - Parallel molecular dynamics code designed for high-performance simulation of large
biomolecular systems

Portable to all popular supercomputing platforms

Great scalability based on Charm++ parallel objects

Scientific aims on Blue Gene/Q
Ensemble run that launches large number of replicas

concurrently - mainly for energetic simulation

High throughput simulation for large scale systems ~100M atoms

Requirements for charm++
New communication layer that supports parallel/parallel runs

Enable charm++ programming paradigm on Parallel Active Messaging Interface (PAMI)

Parallel Structure of NAMD

Hybrid force/spatial decomposition

Adaptive Overlap of Communication and Computation
Dynamic Load Balancing

Chare arrays of charm++

Charm++ runtime system

Application’s view

System’s view
Virtualization & Load Balance

Abstraction of machine layer
system specific code

Network hardware

Interacting chare objects
method invocation

Charm++ solution for NAMD ensemble run on BG/Q

MPI_Comm_split

Converse_Init

Primitive implementation in MPI machine layer

Charm++ rts Charm++ rts Charm++ rts Charm++ rts Charm++ rts

 Comm_Local Comm_Local Comm_Local Comm_Local Comm_Local Comm_Local

 Comm_Cross Comm_Cross

 Comm_Local

 replica exchange

single trajectory run

Charm++ rts Charm++ rts
NAMD NAMD NAMD NAMD NAMD NAMD NAMD

Generic implementation in charm++ RTS/Converse layer!
Mapping each global charm node onto local replicas for single trajectory run!
Remapping each local charm node back to global one for replica-exchange!
Ensemble run itself doesn’t require optimization of low level communication library !!

MPI_Init (Thread)!

Porting charm++ to PAMI

Parallel Active Messaging Interface (PAMI)
 Multiple contexts accelerated by communication threads
 Client and context objects to support multiple programming paradigms
 Lockless algorithms to speed up message rate
 Novel techniques leveraging the new BG/Q architectural features
 scalable atomic primitives implemented in the L2 cache
 the highly parallel hardware messaging unit (MU)
 the collective hardware acceleration

Non SMP charm++
 Traditional implementation and good performance

SMP charm++
 Multiple (Posix) threads run in the same process
 Minimize communication overheads
 Allows processing elements to access memory up to 16GB
 With and without dedicated communication threads

Fine-grained parallelism with multiple PAMI context objects

 Lockless queue
Communication threads

Lockless Queue & Scalable memory Allocator
Lockless queue
L2 atomic operations
Avoid mutex bottleneck
 multiple threads simultaneously send messages to the same peer
Bounded load increment operation
Mutex-protected overflow queue

Scalable memory Allocation
GNU memory allocator: lock contention on multiple free calls
 multiple threads received messages from the same peer

L2 atomic queue for each thread to store a pool of temporary buffers
A threshold for the memory pools after which buffers are freed to the memory heap

M M M M M M

M M Thread 0

Thread 1

L2 Atomic Queue for thread 0!

L2 Atomic Queue for thread 1!

overflow

Overflow Queue for thread 0!

Overflow Queue for thread 1!

consumer producer bound

consumer Producer bound

Exploiting Communication Threads

Take advantage of the wakeup unit
Multiple communication threads can accelerate messages from several worker threads
Communication load evenly distributed across all the communication threads

PAMI Communication threads

Perform background advance!

 Manytomany Interface
Motivation: Neighborhood Collectives

Each processor exchanges data with a different subset of ranks in a communicator

§ Examples
– Boundry exchange
• Neighborhoodgather
– 3D FFT with pencil decomposition
• Neighborhoodalltoall
– Molecular dynamics real space communication
• Neighborhoodgatherandreduce

§ No support in MPI 2 for neighborhood collectives
– Alltoallv, gatherv are typically not efficient with sparse neighborhoods

§ Performance killer of molecular dynamics simulations

Converse Manytomany Interface
Chares send a burst of short messages to neighboring chares in a single optimized call
Messages are setup ahead of time and registered with a handle
Generates a list of sends/receives and completes them on multiple communication threads
Significantly accelerated message rate with multiple communication threads

NAMD Benchmarks

Nodes Cores Procs/node Threads Benchmark Performance (ms) Options
1024 16384 1 64 38.4
2048 32768 1 64 24.7
4096 65536 1 48 15.9 comm threads, many-to-many
8192 131072 1 48 8.7 comm threads, many-to-many

Nodes Cores Procs/node Threads Benchmark Performance (ms) Options
2048  32768 1 48 98.8 comm threads, many-to-many
4096  65536 1 48 55.4 comm threads, many-to-many
8192  131072 1 48 30.3 comm threads, many-to-many
16384 262144 1 32 17.9 comm threads, many-to-many

100M STMV

20M Satellite Tobacco Mosaic Virus (STMV)
Very large PME computation with a grid size of 216 × 1080 × 864
that limits scaling of the standard NAMD PME computation !!

Multicontext,

Lockless queue 1 proc/BGQ node

Scalable memory allocator
}

PME grid size of 1080 × 1080 × 864"

Summary

Acknowledgement
Sameer Kumar (Leader of charm++ optimization on BGQ, IBM)

Parallel Programming Laboratory, UIUC

Jim Phillips (Beckman Institute, UIUC)

Ray Loy (ALCF, ANL)

Charm++ is efficiently ported to BGQ
Significant synergy between BG/Q software and Charm++
Novel fine-grained threading techniques
Generic solution for concurrent multiple copy run

